本站大事记   |  收藏本站
高级检索  全文检索  
当前位置:   本站首页   >   讲座预告   >   正文

​Projective spectrum and finitely generated groups/Complexdynamics and the infinite dihedral group

发布日期:2018-12-04     作者:数学学院      编辑:赵阳     点击:

题目:Projective spectrum and finitely generated groups/Complexdynamics and the infinite dihedral group

时间:2018.12.27

上午场:10:00-11:00

下午场:3:00-4:00

地点:吉林大学数学学院数学楼第一报告厅

报告人:杨容伟教授(美国纽约州立大学Albany分校)

摘要: For a tuple$A=(A_1,\ A_2,\ ...,\ A_n)$ of elements in a unital Banach algebra

${\mathcal B}$, its {\em projective jointspectrum} $P(A)$ is the collection of $z\in {\bf C}^n$ such that themultiparameter pencil $A(z)=z_1A_1+z_2A_2+\cdots +z_nA_n$ is not invertible. If${\mathcal B}$ is the group $C^*$-algebra for a discrete group $G$ generated by$A_1,\ A_2,\ ...,\ A_n$ with respect to a representation $\rho$, then $P(A)$ isan invariant of (weak) equivalence for $\rho$. This series of talks presentsome recent work on the projective spectrum $P(R)$ of $R=(1,\ a,\ t)$ for theinfinite dihedral group $D_{\infty}=<a,\ t\ |\ a^2=t^2=1>$ with respectto the left regular representation. Results include a description of thespectrum, a formula for the Fuglede-Kadison determinant of the pencil$R(z)=z_0+z_1a+z_2t$, the first singular homology group of the joint resolventset $P^c(R)$, and dynamical properties of the spectrum. These results give newinsight into some earlier studies on groups of intermediate growth. Moreover,they suggest a link between projective spectrum and the Julia set of dynamicalmaps. Time permitting, I will also go over some other aspects of the projectivespectrum as related to group theory, topology, complex geometry and Liealgebras.

个人简介:杨容伟教授于1998年5月获得美国纽约州立大学石溪分校博士学位,1998.9月至2001.7月在美国乔治亚大学攻读博士后,现为美国纽约州立大学奥尔巴尼分校数学统计系教授.研究兴趣主要包括:多元算子理论、泛函分析、多变量复分析、群论、复几何、算子代数等。

我要评论:
 匿名发布 验证码 看不清楚,换张图片
0条评论    共1页   当前第1

相关文章

  • 读取内容中,请等待...

地址:吉林省长春市前进大街2699号
E-mail:jlunewsnet@163.com
Copyright©2012 All rights reserved.
吉林大学党委宣传部 版权所有

手机版