本站大事记   |  收藏本站
高级检索  全文检索  
当前位置:   本站首页   >   讲座预告   >   正文

Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions

发布日期:2018-06-22     作者:数学学院      编辑:王焌郦     点击:

Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions

报告人:孟祥云 北京计算科学研究中心

时间:2018年6月21日(周四) 上午10:00-11:00

地点:数学楼627

Abstract:We consider the singularly perturbed fourth-order boundary value problem on the unit square, with Dirichlet boundary conditions. The problem is solved numerically using Adini finite elements -- a simple nonconforming finite element method for this problem. Under reasonable assumptions on the structure of the boundary layers that appear in the solution, a family of suitable Shishkin meshes is constructed and convergence of the method is proved in a ‘broken’ version of the Sobolev norm. This convergence is of a higher order than has been attained by nonconforming elements in previous work on this problem.

我要评论:
 匿名发布 验证码 看不清楚,换张图片
0条评论    共1页   当前第1

推荐文章

地址:吉林省长春市前进大街2699号
E-mail:jluxinmeiti@163.com
Copyright©2021 All rights reserved.
吉林大学党委宣传部 版权所有

手机版