本站大事记   |  收藏本站
高级检索  全文检索  
当前位置:   本站首页   >   讲座预告   >   正文

Data Recovery on Manifolds: A Theoretical Framework

发布日期:2017-12-26     作者:数学学院      编辑:林曦莹     点击:

题 目:Data Recovery on Manifolds: A Theoretical Framework

报告人:港科技大学理学院院长 汪扬教授

简介Abstract: Recovering data from compressed number of measurements is ubiquitous in applications today. Among the best know examples are compressed sensing and low rank matrix recovery. To some extend phase retrieval is another example. The general setup is that we would like to recover a data point lying on some manifold having a much lower dimension than the ambient dimension, and we are given a set of linear measurements. The number of measurements is typically much smaller than the ambient dimension. So the questions become: Under what conditions can we recover the data point from these linear measurements? If so, how? The problem has links to classic algebraic geometry as well as some classical problems on the embedding of projective spaces into Euclidean spaces and nonsingular bilinear forms. In this talk I'll give a brief overview and discuss some of the recent progresses.

时 间:2017年12月26日(星期二) 下午2:00-4:00

地 点:数学楼第一报告厅

我要评论:
 匿名发布 验证码 看不清楚,换张图片
0条评论    共1页   当前第1

推荐文章

地址:吉林省长春市前进大街2699号
E-mail:jluxinmeiti@163.com
Copyright©2021 All rights reserved.
吉林大学党委宣传部 版权所有

手机版