本站大事记   |  收藏本站
高级检索  全文检索  
当前位置:   本站首页   >   讲座预告   >   正文

数学学院、所系列学术报告(730场):河南财经政法大学数学与信息科学学院 王鹏德副教授

发布日期:2017-09-18     作者:数学学院      编辑:林曦莹     点击:

 

题 目 :Efficient difference schemes for the fractional Ginzburg-Landau equation

报告人:河南财经政法大学数学与信息科学学院 王鹏德副教授

时 间:2017年9月22日上午

地 点:数学楼第一报告厅

摘 要:In this talk, we present an efficient difference scheme for the nonlinear complex Ginzburg-Landau equation involving the fractional Laplacian. The scheme is based on the implicit midpoint rule for the temporal discretization and a weighted and shifted Grunwald difference operator for the spatial fractional Laplacian.This scheme is second-order in both time and space. Our focus is on a rigorous theoretical analysis for the scheme.In order to overcome the difficulty caused bythe nonlocal property of the fractional Laplacian,we make a detailed study of the fractional approximation operator. The discrete fractional Gagliardo-Nirenberg inequality and an equivalence relation between an energy norm and the fractional Sobolev semi-norm are established. Then the scheme is proved to be unconditionally convergent in the l^2 norm with optimal order, in the sense that no restriction on the temporal step size in terms of the spatial discretization parameter needs to be assumed. Finally,numerical examples are given to validate the theoretical results and the effectiveness of the scheme.

 

注:讲座信息转自校内办公网,如有变动以现场为准。

我要评论:
 匿名发布 验证码 看不清楚,换张图片
0条评论    共1页   当前第1

推荐文章

地址:吉林省长春市前进大街2699号
E-mail:jluxinmeiti@163.com
Copyright©2021 All rights reserved.
吉林大学党委宣传部 版权所有

手机版